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In the past decade, there has been renewed interest in the classical problem of the effective localization 
of attractors of the Li6nard equation and its different generalizations [1-3]. It should be noted that the 
traditional approach to the localization of the attractors of the Li6nard equation [4--6], based on the 
use of the direct Lyapunov method, is fairly time consuming. The localization estimates obtained by 
this means prove to be too crude, on account of which only the fact of the existence of global attractors 
is established. 

The development of methods for localizing the attractors of the Li6nard equation, begun earlier [7-9], 
is continued below, based on the construction of special piecewise-linear discontinuous comparison 
systems. Such discontinuous systems have been studied [10] in relation to the problem of flutter. On 
the other hand, the introduction of these systems as comparison systems makes the proof of localization 
theorems considerably simpler than in existing schemes [4--6], and on the other hand, for the van der 
Pol equation, the approach proposed yields better estimates of the "amplitude" of the limit cycle than 
those obtained by methods proposed earlier [1-3]. The universality of the construction of the comparison 
systems examined in the present paper enables us to introduce different variable parameters which 
improve localization theorems [7-9]. 

We consider the system 

d y l d t = - g [ F ( y ) - g ( t ) ] - x ,  d x / d t = y  (1) 

where F(y) and E(t) are functions satisfying the Lipschitz condition, and $x is a positive number. 
Below it will be assumed that, for certain positive numbers a and k, the inequality 

(F(y)-E(t))ly>(ay-ksigny)/y, VtGR I, Vy.O (2) 

is satisfied. Assumption (2) is fairly natural and traditional for the Li6nard system (1) [4--6]. 
We will first consider the case when a~t ~> 2. Here, we will introduce the positive half-trajectory of 

the system 

@ l & = - $ a a y - x + ~ ,  ~ l ~ = y  (3) 

with the initial data y(0) = 0, x(0) = -Ixk, and the positive half-trajectory of the system 

dyl  d t=-~ to t y -  x - )~k ,  dx l  dt = y (4) 

with the initial data y(0) = 0, x(0) = ~tk. 
The solutions Gl(x, ~tk) and G2(x, ktk) of the respective first-order equations 

correspond to these trajectories. 

GdG I dx = -IxaG - x + lak 

GdG I dx = -~taG - x - pk 

(5) 
(6) 

tPrikl. Mat. Mekh. Vol. 66, No. 3, pp. 396--401, 2002. 

387 



388 G.A.  Leonov 

Below, we will examine the set 

f~(cx, k )={xe [ -pk ,  pk], G2(x, pk)<~ y~Gt(x,  pk)} 

When c~lx < 2, we will introduce the set ~(c~, k) in a slightly differenrway. It is well known [10] that 
the system 

dy l dt = -~tety- x + pksign y, dx l dt = y (7) 

has a single limit cycle x(t), y(t) with the initial data x(0) = p, y(0) = 0. Here 

1 ÷ exp(-kn/(o)  k - (xtx ¢o = I~]T~-~ 2 

The solution of discontinuous system (7) is determined as by Fihppov [11]. The solution Gl(x, p) of 
Eq. (5) corresponds to the part of the limit cycle that is positioned in the phase half-space {x >I 0}. 
The solution G2(x, p) of Eq. (6) corresponds to the part of the limit cycle that is positioned in the half- 
space {x 1> 0}. 

Remember  that the set 

~(t,  t 0 ) :  II x(t't°'dP°) 
y(t, to,dPo) l [' ~ ( t o ' t o ) : ~ o  

is termed globally attracting if, for any numbers e > 0,x0 ~ Rl,y0 ~ R 1 a number T(e, xo, Yo) exists such 
that the solution x(t, to, Xo, Yo), y(t, to, Xo, Yo) is contained in the e-neighbourhood of the set cI)(t, to) when 
t ~> T(E, x0, Y0)- 

We will call the set O(t, to) the minimum globally attracting set if there is no true subset of cI)(t, to) 
that possesses the property of global attraction. 

We will refer to the minimum globally attracting set O(t, to) of the system (1) as the global attractor 
of this system. 

We will define the set 

f~(ot, k ) : { x ¢ [ - p , p ] ,  G2(x,p)<~y<~Gl(x,p)} 

Theorem 1. The global attractor ~(t,  to) of system (1) is contained in the set ~2(ot, k). 

Proof. Let inequality (2) be satisfied for a certain ot > 0 and k --- k0. It is obvious that it is also satisfied 
for all k >/k0. However, then, for any point (xo, Yo) of the set R 2 \ £2((z, k0), a number k t> k0 exists such 
that (x0, Y0) belongs to the limit f~(cq k). Thus, we have a family of closed curves covering the set 
•2 \ ~(o~, k0). 

We will show that all these curves, with the exception of the points {y = 0, x ~ ~1}, are 
contactless everywhere and that the trajectories of system (1) "pierce" these curves from outside 
in. For this, we will use the Chaplygin-Kamke comparison principle [12-15] and inequality (2). We 
obtain 

d y / d x = ( - p ( F ( y ) - E ( t ) ) - x ) / y < ( - p ( c x y - k s i g n y ) - x ) l y ,  '~'x~R j, Vy~0, ~ ' teR I 

From the comparison principle it follows that the solutions Gj(x), corresponding to the trajectories of 
the system 

dy / dt = -Ix(cry - k sign y) - x, dx I dt = y 

and the solution y(t), x(t) of system (1) possess the following property at the point t = to, x0 = X(to), 
Yo = y(to) = Gj(xo) ~ 0 

ay l dx < dG j l dx 

The required contactlessness of the curvesy = Gj(x) in relation to the vector field of system (1) follows 
from this, Likewise, the assertion of the theorem follows from the contactlessness of this family of curves 
nearly everywhere. 

Corollary 1. The global attractor of system (1) is contained in the set 
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~o = A ~l(a,k) 
Q,k 

where intersection is taken for all parameters a and k satisfying condition (2). 
We will now assume that, instead of inequality (2), the following conditions are satisfied 

( F ( y ) - E ( t ) ) / y > ( a y - k s i g n y ) / y ,  V t ~ R  ~, VyE{ly[~>7} (8) 

( F ( y ) - E ( t ) ) / y > v s i g n y / y ,  '¢t~R ~, ~'y~{lyl~<) '} (9) 

Where v and y are certain numbers, v < O. In this case, instead of comparison equations (5) and (6), 
we introduce the following equation: 

FdF / dx = - f (  F) - x (10) 

[ l~¢xF- kp., F >~ 7 

~pv, F~(O,~) 
f ( F )  = / -~tv' F~(- ' t ,O) 

[ p.aF + k~t, F <~ - T 

We will examine the solutions F](x) and F2(x ) of Eq. (10), positioned in the half-planes {/7 ~> 0} 
and {F ~< 0} respectively with the initial data Fi(9) = Fi(-9 ) = 0 (i = 1, 2). Here 9 is a certain 
number. 

It is clear that these solutions correspond to the limit cycle of the system 

d y l d t = - f ( y ) - x ,  d x l d t = y  

with the initial data y(0) = 0, x(0) = p. It can be shown that such a limit cycle is unique. 

Theorem 2. The global attractor ~(t, to) of system (1) is contained in the set 

¥(c~,k,v)={xe[-p,p],  F2(x)<~y<~Fl(x) } 

The proof is similar to that of Theorem 1. 

Corollary 2. The global attractor of system (1) is contained in the set 

% = f'l ~I'(a,k. v) 
G,k,V 

We will now examine the van der Pol equation, i.e. the case where 

E(t)=O, F ( y ) = y 3 1 3 - y  

Here, condition (2) is satisfied if 

k = 2 ( t x + l ) ~ / 3 + E  (11) 

where e is any positive number. Then, assuming that ct -- 2/~t, we will establish that the set ~0 is positioned 
in the band 

{[xl~<M, y~RJ}, M : 2 p . ( 2 1 p + l ) ~ I 3  (12) 

It is also clear that, when ~t~ 1> 2, the following inequalities are satisfied 

G~(x,~)<~(× +~)/(poO, V x ~ [ - ~ , ~ ]  

C2(x, ~ ) ~ - ( ×  + ~)/(~ux), V x ~ [ - ~ , x ]  
(13) 
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where × is a certain positive number. Using estimates (12) and (13), we obtain the inclusion 

f~0c{Ixl~<M, lYl~<N}, N=(lak+M)l(lxa) (14) 

The quantity N can be replaced by 

N = min 2((a+l)  ~ +(2/11+1) ~)/(3a)  (15) 
a;*211J 

Assuming ~t I> 2/3, and selecting a = 3. we obtain 

N=  16/9+2(2/~t+1) ~ / 9  

Examining the case where a~t < 2 and considering condition (11), we obtain 

" 0 c { I x  I "21"t rain [((x+ 1) ~ l+exp( -~ '~ / ( ° ) ]  
3 aE(o,2/.)L 1 - exp(-)~rt / ~ )  J 

lYl~4-~ -~ min I ( a + l ) ~ ~ + ( ° 2 e x p ( - X x ( a ) ) ] l  (16) 

L j j  
1 o) 

x(a)  = ~ arctg ~- 

Thus, the limit cycle of the van der Pol equation, which is found in the set ~0, can be estimated by 
means of inclusions (14)-(16). 

Applying Theorem 2 with 

2 I & I R  2 V = - - - - £ ,  y =  
3 I+R~ 2 ' 

where e is an arbitrary positive number, we obtain 

_<2 . IRIIR 2 
I P v ~ - ~ " ~  

3 4 +R? 

The inclusion 

R2 

Wo c ll x l~ g(l.t)}, =21a+ min IRLIR2 

Y -- g(g) + ~ I~ when R 2 > al.t(g(g) + ~ It) (19) 

The estimate 

follows from this. 
Thus, for the limit cycle x(t), y(t) of the van der Pol equation considered, the estimate 

Ix(t)l<~g(p), V teR  1 (17) 

is satisfied. 
We will now examine, for the van der Pol equation, one other comparison system with v = -2/3 - e 

and with the parameter y satisfying the equations 

[(g(tz)+ ~tx) 2 - y2]½ + R2 =a~ty when R 2 ~a~t(g(~t)+ ~lz) (18) 
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ly ( t ) l  ~< rain y, V t ~ l t  I 
ct;m21p. 

(20) 

follows from relations (17)-(19). 
Equation (18) can be written in the form 

't = al.~2 + [(! + ~2Ix2)(g(Ix) + ~ix)2 _/t~ ]J~ 
1 + cx2IX 2 

Estimate (19)-(21) is more accurate than estimate (14). In particular 

R,), e,= -Lt 77 
Therefore, when IX ~> 2/3 and o~ = 3, from Eq. (21) we obtain the estimate 

(21) 

{C9--s- ) _,,o:1 min ~'~< 14+  + 4  (2+R3) 2 9Ix2 j j 
a~,2/p 

Estimates Ymax of the maximum value max ly(t) I of the limit cycle with respect to the y coordinate, 
obtained using inclusions (16) and (20), are given below (when 0.1 ~< Ix ~< 0.6, estimate (16) was used, 
and when 0.7 ~< Ix ~< 100, estimate (20) was used; the value of max ly(t) ] was obtained by Odani [13] 
using a computer experiment): 

la 0.1 0.5 0,6 0.7 I 
Ymax 2.207 2.253 2.273 2.263 2.200 
maxly(t)l 2.00010 2.00862 
IX 2 5 10 14 100 
Ymax 2.123 2.060 2.032 2.0234 2.003 
maxly(t)[ 2.01989 2.02151 2.01429 

Note that there are the following estimates of maxiy(t) l for all Ix e (0, +~) :  maxiy(t) I < 2.805 [1], 
maxly(t) l < 2.5425 [2], and max ly(t)[ < 2.3439 [3]. Thus, the results obtained using estimates (16) 
and (20) are better than these estimates. 

Odani [3] put forward the hypothesis that, for any Ix > 0, the estimate 

ly(t)l ~< 2.0235 

holds. 
From estimate (20) it follows that this hypothesis is correct for Ix I> 14. To prove this correctness for 

any tx > 0 using the approach proposed here, it is necessary to construct, for Ix e (0, 14), more complex 
piecewise-linear comparison systems. 
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